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 OVERFLOW-INDUCED VIBRATION OF A WEIR
 COUPLED WITH SLOSHING IN A DOWNSTREAM

 TANK

 D .  L U , * ‡  A .  T AKIZAWA †  and S .  K ONDO *
 *  Department of Quantum Engineering and Systems Science , Uni y  ersity of Tokyo

 Tokyo  1 1 3 , Japan
 †  Nuclear Power R & D Center , Tokyo Electric Power Company
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 ( Recei y  ed  2 7   October  1 9 9 4   and in finally re y  ised form  1 0   January  1 9 9 7 )

 This paper presents a new analytical method for the analysis of overflow-induced vibration
 of a weir .  In this method ,  the potential separation technique and Laplace transform are
 used to solve the equation of potential flow and the governing equation of the
 fluid-structure coupled system respectively ,  and an overflow model is developed to
 describe the behavior of the overflow falling into the downstream tank .  The analytical
 results show good agreement with the numerical ones .  The mechanism of the overflow-
 induced vibration is clarified and measures to suppress or alleviate such vibration are also
 proposed .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 I N THIS PAPER  A SPECIAL PHENOMENON  will be discussed ,  which is the overflow-induced
 vibration of an elastic weir coupled with the sloshing of free-surface coolant in a
 downstream tank .  This phenomenon was first observed in the French Demonstration
 LMFBR (liquid metal cooled fast breeder reactor) ‘‘Super Phenix (SPX)’’ (Aita  et al .
 1986) .  Because the coolant coming out of the reactor core has a very high temperature
 in the LMFBR ,  a thin-walled weir was installed to form a forced circulation loop of
 cold sodium between the weir and the reactor wall to protect the reactor wall from
 excessive thermal stress (see Figure 1) .  However ,  undesirable vibration of the weir was
 observed in the pre-operation stage of the SPX .  It is important for the safety
 assessment of the LMFBR to clarify the mechanism of this overflow-induced vibration .

 The experiments of Aita  et al .  (1986) found that there are two modes of vibration :  a
 ‘‘sloshing mode’’ ,  where the vibration is coupled with the sloshing of coolant in the
 downstream region ,  and a ‘‘fluid-elastic mode’’ ,  where no sloshing occurs .  Eguchi &
 Tanaka (1990) and Kaneko  et al .  (1991) performed experiments in either rectangular or
 cylindrical tanks using flexible weirs .  Fujita  et al .  (1992 ,  1993) performed three-
 dimensional (3-D) experiments using a  1 – 10 -scale and  1 – 5 -scale weir model of the thermal
 shield of the Japanese Demonstration LMFBR .  Although the vibration observed in
 SPX is a 3-D phenomenon in concentric cylindrical vessels ,  in a basic study essentially
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 Figure 1 .  Layout of French LMFBR Super Phenix (Aı ̈ ta  et al .  1986) .

 the same phenomenon was found in a 2-D rectangular tank having a spring-supported
 rotatable rigid weir (see Figure 2) by Fukuie & Hara (1989) .

 Since the experimental method has various limitations in measuring physical
 variables under the dynamic movement of a free surface or walls ,  a theoretical analysis
 as well as numerical analysis are necessary to understand the mechanism of this
 vibration .  From the viewpoint of both numerical and theoretical analysis ,  Fukuie &
 Hara’s experiment is the best one because it is the simplest among them ,  being purely
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 Figure 2 .  Experimental apparatus of Fukuie & Hara (1989) .
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 a 2-D experiment .  The spring-supported rotatable rigid weir in their experiment also
 facilitates the analysis because it does not involve the additional complexity of the
 bending of the weir .

 Eguchi & Tanaka (1990) ,  Hara & Suzuki (1992) ,  and Kaneko  et al .  (1993) have
 presented their theoretical models for the present problem using the conventional
 analytical method of modal analysis .  In their models ,  the pressure boundary assump-
 tion at the inlet of the overflow into the downstream tank was used ,  which assumes
 that all the kinetic energy of the overflow is transformed into pressure when the
 overflow hits the free surface in the downstream tank .  However ,  this assumption may
 not be very realistic .

 Dif ferent from the modal analysis ,  we adopted a potential separation technique in
 order to use the more natural boundary condition at the inlet of the overflow into the
 downstream tank .  The potential separation technique was developed by Aslam  et al .
 (1979)   and Fujita  et al .  (1985) for analysis of the seismic response of sloshing in a rigid
 tank .  In the present study we extend this technique by incorporating a spring-supported
 weir module .  Formulation of this new analytical method is introduced in Section 2 .
 Validation of the newly extended method is presented in Section 3 by comparison with
 numerical results .  Application of the present analytical method to Fukuie & Hara’s
 experiment is ef fected in Section 4 ,  where we give a natural velocity boundary model to
 the inlet of the overflow into the downstream tank .  Conclusions are presented in
 Section 5 .

 2 .  FORMULATION OF THEORETICAL METHOD

 2 . 1 .  F LOW  V ELOCITY  P OTENTIAL IN A  T ANK  H AVING A  M OVABLE  W ALL

 We begin the study by solving the flow velocity potential in a tank having a movable
 wall as shown in Figure 3 ,  where the spring-supported wall moves in two ways :
 translation and rotation .  The translation case is simple ,  easy to solve ,  and it is also easy
 for us to understand the physical meaning of the derived formulae .  The rotation case is
 more realistic because it is the manner of movement in Fukuie & Hara’s experiment .
 From here on ,  an  h x ,  z j   coordinate system is used ,  with the origin at the left end of the
 stationary free surface ,  as shown in Figure 3 .
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 Figure 3 .  Fluid motion in a tank having a spring-supported movable wall which moves in two dif ferent
 ways ,  (a) and (b) .
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 2 . 1 . 1 .  Translation case

 We start with the translation case .  By assuming the free-surface liquid as a potential
 flow ,  we can describe the governing equation of the sloshing using flow velocity
 potential  f   as follows :

 Û
 2 f

 Û x 2  1
 ­ 2 f

 ­ z 2  5  0 ,  (equation  of  continuity)  (1)

 with the boundary conditions

 Û f

 Û x
 U

 x 5 0
 5  0 ,

 Û f

 Û x
 U

 x 5 l
 5  j ~  ( t ) ,  (at  the  walls)  (2)

 Û f

 Û z
 U

 z 52 h
 5  0 ,  (at  the  bottom) ,  (3)

 and

 Û
 2 f

 Û t 2  1  g
 Û f

 Û z
 U

 z 5 0
 5  0 ,  (at  the  free  surface)  (4)

 where  l ,  h ,  g  and  j  ( t ) are ,  respectively ,  the width and the depth of the tank ,  the
 acceleration of gravity ,  and the displacement of the right wall from its original position ;
 the dot denotes dif ferentiation with time .

 In order to solve the nonhomogeneous boundary condition at the movable wall ,  we
 need to separate  f   into  f F   and  f  1 :   f F   relating to the movement of the right wall with
 no sloshing of the free surface ,  and  f  1  relating only to the sloshing of the free surface .

 f F   is governed by equations (1) – (3) and the boundary condition at the free surface ,

 Û f F

 Û z
 U

 z 5 0
 5  2

 h
 l

 j ~  ( t ) .  (5)

 A special solution of  f F   can be chosen as

 f F  5
 x 2  2  ( z  1  h ) 2

 2 l
 j ~  ( t ) .  (6)

 By subtracting  f F   from the equation set (1) – (4) ,  we can derive the equation set for
 f  1 ,  which is the same as (1) – (4) except for the boundary conditions at the movable
 wall and at the free surface ;  they should be replaced by the following equations ,
 respectively :

 Û f  1

 Û x
 U

 x 5 l
 5  0 ,  and

 Û
 2 f  1

 ­ t 2  1  g
 ­ f  1

 Û z
 U

 z 5 0
 5  2 g

 Û f F

 Û z
 2

 Û
 2 f F

 Û t 2  U
 z 5 0

 .  (7)

 As a solution of  f  1 ,  we assume the following form ,  which is a sum of sloshing in  n th
 mode ,

 f  1  5  O ̀
 n 5 0

 cos  k n x  cosh  k n ( z  1  h ) T n ( t ) ,  n  5  0 ,  1 ,  2 ,  .  .  .  (8)

 where  T n ( t ) is unknown and  k n  5  n π  / l  is a wavenumber .
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 By substituting equations (6) and (8) into (7) ,  we can obtain the following equation
 for  T n ( t ) :

 O ̀
 n 5 0

 cos  k n x  cosh  k n h [ T ̈  ( t )  1  v  2
 n T n ( t )]  5

 gh
 l

 j ~  ( t )  2
 x  2  2  h 2

 2 l
 j &  ( t ) ,  (9)

 where  v n  5  4 gk n  tanh  k n h  is the natural frequency of sloshing in a rigid tank .  Then we
 expand  x 2  in the above equation by Fourier series in the range [0 ,  l ] as follows ;

 x 2  5
 l 2

 3
 1  O ̀

 n 5 1
 a n  cos  k n x ,  (10)

 where  a n  5  (2 / l )  e l
 0  x  2  cos  k n x  d x  5  4( 2 1) n  / k 2

 n ,  ( n  ?  0) .  Using equation (10) ,  equation
 (9) can be rewritten as follows :

 O ̀
 n 5 0

 cos  k n x  cosh  k n h [ T ̈  ( t )  1  v  2
 n T n ( t )]  5 F gh

 l
 j ~  ( t )  1

 h 2

 2 l
 j &  ( t )  2

 l
 6

 j &  ( t ) G
 2 O ̀

 n 5 1

 a n

 2 l
 cos  k n x j &  ( t )  5 F gh

 l
 a  1

 h 2

 2 l
 2

 l

 6
 G j &  ( t )  2  O ̀

 n 5 1

 a n

 2 l
 cos  k n x j &  ( t ) ,  (11)

 where  a   is a constant .  From equation (11) ,  we can obtain the following equation for
 each  n :

 T ̈  ( t )  1  v  2
 n T n ( t )  5  2

 b n

 cosh  k n h
 j &  ( t ) ,  (12)

 where  b  0  5  2 [( gh  / l ) a  1  h 2 / 2 l  2  1 – 6 l ] and  b n  5  a n  / 2 l ,  ( n  ?  0) .  Equation (12) gives the
 following solution for  T n ( t ) :

 T n ( t )  5  2
 b n

 v n  cosh  k n h
 E t

 0
 j &  ( τ  )  sin  v n ( t  2  τ  )  d τ .  (13)

 Finally ,  from equations (6) ,  (8) and (13) we can obtain the following explicit
 expression for the velocity potential  f  :

 f  5  f F  1  f  1  5
 x 2  2  ( z  1  h ) 2

 2 l
 j ~  ( t )

 2  O ̀
 n 5 0

 b n

 v n  cosh  k n h
 cos  k n x  cosh  k n ( z  1  h ) E t

 0
 j &  ( τ  )  sin  v n ( t  2  τ  )  d τ .  (14)

 2 . 1 . 2 .  Rotation case

 The only dif ference between the set of governing equations for the rotation and the
 translation cases is the right-wall boundary condition .  The second of equations (2)
 should be replaced by

 Û f

 Û x
 U

 x 5 l
 5  ( z  1  h ) θ ~  ( t ) ,  (15)

 where  θ  ( t ) denotes rotation of the wall measured from the vertical position .  Similarly
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 Figure 4 .  Movement separation for a rotatable wall .

 to the translation case ,   f   is separated into  f F   and  f  1 ,  and  f F   is determined by the
 equation set which is the same as equations (1) – (4) ,  except for the boundary
 conditions at the movable wall and at the free surface ,  which are

 Û f F

 Û x
 U

 x 5 l
 5  ( z  1  h ) θ ~  ( t ) ,  and

 Û f F

 Û z
 U

 z 5 0
 5  2

 h 2

 2 l
 θ ~  ( t ) .  (16)

 As shown in Figure 4 ,  we further separate  f F   into the translation part  f F t   and the
 rotation part  f F r  ;   f F t   is governed by the equation set which is the same as (1) – (4) ,
 except for the boundary conditions at the movable wall and at the free surface ,  which
 are

 Û f F t

 Û x
 U

 x 5 l
 5

 h
 2

 θ ~  ( t ) ,  and
 Û f F t

 Û z
 U

 z 5 0
 5  2

 h 2

 2 l
 θ ~  ( t ) ,  (17)

 whose special solution is

 f F t  5
 h
 2

 x  2  2  ( z  1  h ) 2

 2 l
 θ ~  ( t ) .  (18)

 Meanwhile ,   f F r   is related to the rotation of the right wall without changing the
 water level and is determined by equation set (1) – (4) again ,  except for the boundary
 conditions at the movable wall and at the free surface ,  which are

 Û f F r

 Û x
 U

 x 5 l
 5 S z  1

 h
 2
 D θ ~  ( t ) ,  and

 Û f F r

 Û z
 U

 z 5 0
 5  0 .  (19)

 We now assume the following expansion for  f F r  :

 f F r  5  O ̀
 m 5 1

 b m  cosh  l m x  sin  l m ( z  1  1 – 2 h ) θ ~  ( t ) ,  m  5  1 ,  2 ,  3 ,  .  .  .  (20)

 where  l m  5  [(2 m  2  1) / h ] π .  Then ,  by substituting equation (20) into (19) ,  we can obtain
 the following expression for  b m :

 b m  5
 4( 2 1) m 2 1

 h l 3
 m  sinh  l m l

 .  (21)

 Applying a similar process to equations (7) through (13) in the translation case ,  we
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 can obtain the potential  f  1  in the rotation case as follows [for the details ,  please refer
 to appendix II . A in Lu (1995)] :

 f  1  5  2 O ̀
 n 5 0

 b n

 v n  cosh  k n h
 cosh  k n x  cosh  k n ( z  1  h ) E t

 0
 θ &  ( τ  )  sin  v n ( t  2  τ  )  d τ  ,  (22)

 where  b n   in the present case is expressed as follows :

 b n  5
 a n

 2 l
 h
 2
 F 1  1

 8
 π  2  S  O ̀

 m 5 1

 1
 (2 m  2  1) 2  2  O ̀

 m 5 1

 1
 (2 m  2  1) 2  1  ( nh  / l ) 2 D G

 5
 a n

 2 l
 h
 2
 F 2  2

 4 l
 nh π  S  e  ( nh π  / l )

 sinh( nh π  / l )
 2

 e ( nh π  /2 l )

 2  sinh( nh π  / 2 l )
 2

 1
 2
 D G .  (23)

 Finally ,  we obtain the explicit expression for  f   from equations (18) ,  (20) and (22) :

 f  5  f F t  1  f F r  1  f  1  .  (24)

 2 . 1 . 3 .  Growth rate of sloshing excited by the mo y  able wall

 According to the Bernoulli equation the water level is expressed as follows :

 h  5  2
 1
 g

 Û f

 Û t
 U

 z 5 0
 .  (25)

 Substituting equation (14) into (25) ,  we obtain

 h  5  2
 1
 g
 F x  2  2  h 2

 2 l
 j ̈  ( t )  2  O ̀

 n 5 1
 b n  cos  k n x E t

 0
 j &  ( τ  )  cos  v n ( t  2  τ  )  d τ G

 5  2
 1
 g
 F  1 – 3 l 2  2  h 2

 2 l
 j ̈  ( t )  1  O ̀

 n 5 1
 b n  cos  k n x j ̈  ( t )

 2  O ̀
 n 5 1

 b n  cos  k n x S j ̈  ( t )  2  v n E t

 0
 j ̈  ( τ  )  sin  v n ( t  2  τ  )  d τ D G

 5  2
 1
 g
 F  1 – 3 l 2  2  h 2

 2 l
 j ̈  ( t )  1  O ̀

 n 5 1
 v n b n  cos  k n x E t

 0
 j ̈  ( τ  )  sin  v n ( t  2  τ  )  d τ G .  (26)

 When the sloshing is in the  n th mode ,  and the right wall is oscillated according to

 j ~  ( t )  5  D  cos  v n t ,  (27)

 the water level is obtained as follows :

 h  5
 1
 g
 F  1 – 3 l 2  2  h 2

 2 l
 D v n  sin  v n t  1  b n  cos  k n xD v  2

 n E t

 0
 sin  v n τ  sin  v n ( t  2  τ  )  d τ  ) G

 5
 D v n

 2 gl
 S 1

 3
 l 2  2  h 2 D  sin  v n t  1

 b n D v  2
 n

 2 g
 S sin  v n t

 v n
 2  t  cos  v n t D  cos  k n x .  (28)

 So the growth rate (GR) of water level can be calculated as

 GR  5 U b n D v  2
 n

 2 g
 U  .  (29)

 In the same way ,  it is found that the growth rate in the rotation case can also be
 expressed by equation (29) .
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 2 . 2 .  F LUID – W ALL  I NTERACTION IN A  T ANK  H AVING  S PRING - SUPPORTED  M OVABLE

 W ALL

 We next solve the fluid-wall interaction in a tank having a spring-supported movable
 wall as shown in Figure 3 .

 2 . 2 . 1 .  Translation case

 The equation of motion of a spring-supported wall can be written as follows :

 m j ̈  ( t )  5 E h  ( t ) 3 x 5 l

 2 h
 p 3 x 5 l  d z  2  k ( j  ( t )  1  j  0 ) ,  (30)

 where  m ,  k ,  p  and  h  ( t ) are mass of wall ,  constant of spring ,  pressure of fluid ,  and
 elevation of free surface ,  respectively ,  and  j  0  5  r gh 2 / 2 k  is the pre-compression length
 of the spring against the static pressure of the liquid .  According to the Bernoulli
 equation and using equation (14) ,  we can obtain the following expression for the fluid
 pressure in the  n th mode at the right wall boundary :

 p 3 x 5 l  5  2 r gz  2  r
 Û f

 Û t
 U

 x 5 l
 5  2 r gz  2  r F x  2  2  ( z  1  h ) 2

 2 l
 j ̈  ( t )

 2  O ̀
 n 5 0

 b n

 cosh  k n h
 cos  k n x  cosh  k n ( z  1  h ) E t

 0
 j &  ( τ  )  cos  v n ( t  2  τ  )  d τ G U

 x 5 l

 5  2 r gz  2  r F l 2  2  ( z  1  h ) 2

 2 l
 j ̈  ( t )

 2
 ( 2 1) n b n

 cosh  k n h
 cosh  k n ( z  1  h ) E t

 0
 j &  ( τ  )  cos  v n ( t  2  τ  )  d τ G .  (31)

 Then ,  by substituting equation (31) into (30) ,  we can obtain the governing fluid-wall
 coupled equation in terms of  j  ( t ) as follows :

 ( m  1  E ) j ̈  ( t )  1  k j  ( t )  5  F E t

 0
 j &  ( τ  )  cos  v n ( t  2  τ  )  d τ  ,  (32)

 where  E  and  F  are constants given by

 E  5  r
 lh

 2
 2  r

 h 3

 6 l
 ,  F  5

 2 r l 2

 ( n π  ) 3  tanh  k n h .  (33)

 E  comes from  f F   and works as a ‘‘virtual mass’’ in equation (32) .  The first term of  E  is
 equal to half of the fluid mass in the tank ,  so this term can be regarded as a ‘‘fluid
 inertia’’ .  The second term of  E  is related to the pressure change caused by the change
 of average water level .  It has a minus sign because the change of water level always
 helps the spring to move the wall .   F  ,  on the other hand ,  comes from  f  1  and is related
 to the pressure change caused by the sloshing .

 As equation (32) involves the convolution integral ,  and techniques of the
 conventional modal analysis are not applicable ,  we need the Laplace transform to solve
 it .  Using Laplace transforms ,  we can obtain the following equation :

 ( m  1  E )[ s 2 j ̃  ( s )  2  s j  (0)  2  j ~  (0)]  1  k j ̃  ( s )  5  F  [ s 3 j ̃  ( s )  2  s 2 j  (0)  2  s j ~  (0)  2  j ̈  (0)]
 s

 s 2  1  v  2
 n

 ,  (34)
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 where the tilde denotes a transformed quantity and  s  is the Laplace variable .  Equation
 (34) can be rewritten in the form of transfer function as follows ;

 j ̃  ( s )  5

 j  (0) s 3  1  j ~  (0) s 2  1
 ( m  1  E ) v  2

 n j  (0)  2  F j ̈  (0)
 m  1  E  2  F

 s  1
 ( m  1  E ) v  2

 n j ~  (0)
 m  1  E  2  F

 s 4  1
 ( m  1  E ) v  2

 n  1  k
 m  1  E  2  F

 s 2  1
 k v  2

 n

 m  1  E  2  F

 5

 j  (0) s 3  1  j ~  (0) s 2  1
 ( m  1  E ) v  2

 n j  (0)  2  F j ̈  (0)
 m  1  E  2  F

 s  1
 ( m  1  E ) v  2

 n j ~  (0)
 m  1  E  2  F

 ( s 2  1  v  2
 1 )( s 2  1  v  2

 2 )
 .  (35)

 In this equation ,   v 1  and  v 2  are the two poles of the transfer function ,  and correspond
 to the frequencies of the fluid-wall coupled system .  They are expressed as follows :

 v  2
 Ú  5

 [(1  1  E  / m ) v  2
 n  1  v  2

 b ]  Ú  4 [(1  1  E  / m ) v  2
 n  1  v  2

 b ] 2  2  4(1  1  E  / m  2  F  / m ) v  2
 n v  2

 b

 2(1  1  E  / m  2  F  / m )
 ,  (36)

 where  v n   and  v b   are the natural frequency of sloshing in a rigid tank and that of the
 wall with no liquid ( 4 k  / m ) ,  respectively .  Both  v 1  and  v 2  are real ,  since the
 expression in square root in equation (36) is always non-negative .  Therefore it is
 concluded that the fluid-wall coupled system has two natural frequencies for each
 sloshing mode .  It should be pointed out that in equation (36) sloshing is in the  n th
 mode ,  while the movement of wall does not belong to any category of a ‘mode’ because
 it is a rigid wall supported by a spring .

 From equation (36) we can find the following order among  v n ,   v 1  and  v 2 :

 v 1  .  v n  .  v 2  ,  (37)

 and the following limit for infinitely large  k :

 lim
 k 5 ̀

 v 1  5  ̀  ,  and  lim
 k 5 ̀

 v 2  5  v n .  (38)

 2 . 2 . 2 .  Rotation case

 The equation of motion of the spring-supported wall in the rotation case is written as

 I θ ̈  ( t )  5 E h  ( t ) 3 x 5 l

 2 h
 p 3 x 5 l  ( h  1  z )  d z  2  kL 2 ( θ  ( t )  1  θ  0 ) ,  (39)

 where  I  and  L  are the moment of inertia and length of the wall from the hinge to the
 spring ,  respectively ;   θ  0  5  r gh 3 / 6 kL 2  is the pre-compression angle of the spring against
 the static pressure of the liquid .  Similarly to the translation case ,  the governing
 fluid-wall coupled equation in terms of  θ  ( t ) of the right wall can be written as

 ( I  1  E ) θ ̈  ( t )  1  kL 2 θ  ( t )  5  F E t

 0
 θ &  ( τ  )  cos  v n ( t  2  τ  )  d τ  ,  (40)

 where  E  and  F  are as follows [for details ,  please refer to appendix II . B in Lu (1995)] :

 E  5  r
 lh  3

 8
 2  r

 h 5

 16 l
 1

 8 r h 4

 π  5  O ̀
 m 5 1

 1
 (2 m  2  1) 5  tanh  [(2 m  2  1) π l  / h ]

 (41)
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 and

 F  5
 2 r l 2

 ( n π  ) 3

 h
 2
 F 1  1

 8
 π  2  S  O ̀

 m 5 1

 1
 (2 m  2  1) 2  2  O ̀

 m 5 1

 1
 (2 m  2  1) 2  1  ( nh  / l ) 2 D G

 3 F h  tanh
 n π h

 l
 2

 l
 n π  S 1  2

 1
 cosh[ n π h  / l ]

 D G .  (42)

 E  and  F  have similar physical meanings to those in the translation case ,  except for the
 terms expressing the rotational inertia .  The third term of  E  is newly arisen and comes
 from  f F r .  It is related to the pressure caused by the change of rotational flow velocity .
 The second term in the first bracket of  F  is related to the contribution of rotational flow
 to the sloshing .  The value of the first bracket in  F  is nearly equal to unity for a shallow
 tank ,  and is nearly equal to 2 for a deep tank .

 Using Laplace transforms ,  we can obtain two natural frequencies of the fluid-wall
 coupled system in the rotation case in terms of the natural frequency of sloshing  v n

 and that of the right wall  v b  5  4 kL 2 / I ;  i . e .

 v  2
 Ú  5

 [(1  1  E  / I ) v  2
 n  1  v  2

 b ]  Ú  4 [(1  1  E  / I ) v  2
 n  1  v  2

 b ] 2  2  4(1  1  E  / I  2  F  / I ) v  2
 n v  2

 b

 2(1  1  E  / I  2  F  / I )
 .  (43)

 Relations similar to equations (37) and (38) also hold in the rotation case .

 2 . 2 . 3 .  Beat period

 Because of the existence of two natural frequencies ,  we can predict the occurrence of
 beats .  If the sloshing is excited by setting the spring-supported wall out of the
 equilibrium position and then releasing it ,  we can set the initial conditions as follows :

 j  (0)  ?  0 ,  j ~  (0)  5  0  and  j ̈  (0)  ?  0 .  (44)

 So we can rewrite equation (35) as follows :

 j ̃  ( s )  5

 s F j  (0) s 2  1
 ( m  1  E ) v  2

 n j  (0)  2  F j ̈  (0)
 m  1  E  2  F

 G
 ( s 2  1  v  2

 1 )( s 2  1  v  2
 2 )

 5
 Qs

 s 2  1  v  2
 1

 1
 Rs

 s 2  1  v  2
 2

 ,  (45)

 where  Q  and  R  are constants given by

 Q  5
 2 ( m  1  E ) v  2

 n j  (0)  1  ( m  1  E  2  F  ) v  2
 1 j  (0)  1  F j ̈  (0)

 ( m  1  E  2  F  )( v  2
 1  2  v  2

 2 )
 ,  (46)

 R  5
 ( m  1  E ) v  2

 n j  (0)  2  ( m  1  E  2  F  ) v  2
 2 j  (0)  2  F j ̈  (0)

 ( m  1  E  2  F  )( v  2
 1  2  v  2

 2 )
 .  (47)

 Performing the inverse Laplace transform on equation (45) ,  we obtain

 j  ( t )  5  Q  cos  v 1 t  1  R  cos  v 2 t

 5  ( Q  1  R )  cos
 v 1  2  v 2

 2
 t  cos

 v 1  1  v 2

 2
 t  1  ( Q  2  R )  sin

 v 1  2  v 2

 2
 t  sin

 v 1  1  v 2

 2
 t .  (48)

 Equation (48) indicates that if  Q    R  or  Q  Ô  R ,  the wall oscillates with almost the
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(a)  Translation case
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 Figure 5 .  Fluid motion in a tank having two movable walls ,  showing two dif ferent types of wall motion .

 natural frequency of  v 1  or  v 2 ;  while the wall vibration displays the beating
 phenomenon if  Q  <  R .  In the latter case ,  the beat period is determined by

 T  5
 2 π

 v 1  2  v 2

 .  (49)

 2 . 3 .  F LUID - WALL  I NTERACTION  E XCITED BY THE  S ECOND  W ALL

 We now solve the fluid-wall interaction in a tank having two movable walls as shown
 in Figure 5 .

 2 . 3 . 1 .  Translation case

 We need to add to the flow velocity potential the terms for the left wall vibration .  We
 rewrite  f   in equation (14) as  f R   in this subsection ,  and obtain  f L   by a symmetry
 transformation of  f R   as follows :

 f L  5  2
 ( x  2  l ) 2  2  ( z  1  h ) 2

 2 l
 j ~  L ( t )

 1  O ̀
 n 5 0

 b n

 v n  cosh  k n h
 cos  k n ( x  2  l )  cosh  k n ( z  1  h ) E t

 0
 j & L ( τ  )  sin  v n ( t  2  τ  )  d τ .  (50)

 Thus ,  the total flow velocity potential in the tank having two movable walls can be
 written as

 f  5  f R  1  f L .  (51)

 By the same process as in Section 3 . 1 . 2 ,  the governing fluid – wall coupled equation
 can be written as

 ( m  1  E ) j ̈  R ( t )  1  k j R ( t )  5  F E t

 0
 ( j & R ( τ  )  2  ( 2 1) n j & L ( τ  ))  cos  v n ( t  2  τ  )  d τ  2  G j ̈  L ( t ) ,  (52)

 where the new coef ficient  G  5  r
 h 3

 6 l
   is related to the pressure imposed on the right wall

 caused by the change of water level due to the movement of the left wall .
 Firstly ,  we discuss the growth rate of the right wall vibration .  We oscillate the left

 wall sinusoidally with the natural frequency  v 1  or  v 2  as follows :

 j ~  L ( t )  5  D  cos  v  Ú t ,  (53)
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 where  D  denotes the amplitude .  By substituting equation (53) into (52) and using the
 Laplace transform ,  we obtain

 ( m  1  E ) s 2 j ̃  R ( s )  1  k j ̃  R ( s )  5  F F s 3 j ̃  R ( s )  1
 ( 2 1) n D v  2

 Ú s

 s 2  1  v  2
 Ú

 G  s

 s 2  1  v  2
 n

 1
 GD v  2

 Ú

 s 2  1  v  2
 Ú

 ,  (54)

 where the right wall is assumed at the equilibrium position in the beginning .  Equation
 (54) can be rewritten in the form of a transfer function as follows :

 j ̃  R ( s )  5

 [( 2 1) n F  1  G ] D v  2
 Ú s 2  1  GD v  2

 Ú v  2
 n

 ( m  1  E  2  F  )( s 2  1  v  2
 Ú )

 ( s 2  1  v  2
 1 )( s 2  1  v  2

 2 )
 5

 1
 s 2  1  v  2

 Ú

 S  A Ú

 s 2  1  v  2
 1

 1
 B Ú

 s 2  1  v  2
 2
 D ,  (55)

 where  A Ú   and  B Ú   are constants given by

 A Ú  5
 D v  2

 Ú

 m  1  E  2  F
 2 G v  2

 n  1  (( 2 1) n F  1  G ) v  2
 1

 v  2
 1  2  v  2

 2

 ,  (56)

 B Ú  5
 D v  2

 Ú

 m  1  E  2  F

 G v  2
 n  2  (( 2 1) n F  1  G ) v  2

 2

 v  2
 1  2  v  2

 2

 .  (57)

 Then performing the inverse Laplace transform on equation (55) ,  we obtain the
 following form for the vibration of the right wall :

 j  Ú

 R ( t )  5
 A Ú

 v  Ú v 1
 E t

 0
 sin  v  Ú τ  sin  v 1 ( t  2  τ  )  d τ  1

 B  Ú

 v  Ú v 2
 E t

 0
 sin  v  Ú τ  sin  v 2 ( t  2  τ  )  d τ .  (58)

 By integrating by parts ,  this equation can be rewritten as follows :

 j  1
 R ( t )  5

 A 1

 v  2
 1
 E t

 0
 sin  v 1 τ  sin  v 1 ( t  2  τ  )  d τ  1

 B 1

 v 1 v 2
 E t

 0
 sin  v 1 τ  sin  v 2 ( t  2  τ  )  d τ

 5  2
 A 1

 2 v  2
 1

 t  cos  v 1 t  1
 A 1

 v  3
 1

 sin  v 1 t  1
 B  1 ( v 1  sin  v 2 t  2  v 2 sin  v 1 t )

 v 1 v 2 ( v  2
 1  2  v  2

 2 )
 ,  (59)

 and

 j  2
 R ( t )  5

 B 2

 v  2
 2
 E t

 0
 sin  v 2 τ  sin  v 2 ( t  2  τ  )  d τ  1

 A 2

 v 1 v 2
 E t

 0
 sin  v 2 τ  sin  v 1 ( t  2  τ  )  d τ

 5  2
 B  2

 2 v  2
 2

 t  cos  v 2 t  1
 B  2

 v  3
 2

 sin  v 2 t  1
 A 2 ( v 2  sin  v 1 t  2  v 1  sin  v 2 t )

 v 1 v 2 ( v  2
 2  2  v  2

 1 )
 .  (60)

 The coef ficients of the terms  t  cos  v  Ú t  are related to the growth rate .  They are written ,
 respectively ,  as

 G 1
 j  5  2

 A 1

 2 v  2
 1

 and  G  2
 j  5  2

 B  2

 2 v  2
 2

 .  (61)

 Growth rates are the absolute values of  G Ú

 j    in equation (61) .  Here we discuss the
 growth rate corresponding to  v 2  as an example .  Using equation (57) it is rewritten as
 follows :

 GR 2
 j  5 U  B 2

 2 v  2
 2
 U  5 U  D

 2( m  1  E  2  F  )
 G v  2

 n  2  (( 2 1) n F  1  G ) v  2
 2

 v  2
 1  2  v  2

 2
 U  .  (62)
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 2 . 3 . 2 .  Rotation case

 By a similar process ,  we can obtain the coef ficient  G  in the rotation case as follows ;

 G  5  r
 h 5

 16 l
 2

 8 r h 4

 π  5  O ̀
 m 5 1

 1
 (2 m  2  1) 5  sinh  [(2 m  2  1) π l  / h ]

 .  (63)

 The growth rate of wall vibration and the growth rate ratio of sloshing in the rotation
 case have the same form as those in the translation case ,  except that the mass  m  is
 replaced by the moment of inertia  I ,  and the parameters such as  E ,  F ,  G ,  v  Ú  ,  b n   and so
 on are used in the rotation case .

 2 . 4 .  S PRING - MASS  M ODEL

 We finally simplify the fluid-wall coupled system into a simple spring-mass model when
 k  is large enough to use the Taylor expansion .

 First ,  we discuss  v 2  .  We rewrite  v  2
 2  in equation (36) by taking its inverse ,  i . e .

 1
 v  2

 2

 5
 [(1  1  E  / m ) v  2

 n  1  v  2
 b ]  1  4 [(1  1  E  / m ) v  2

 n  1  v  2
 b ] 2  2  4(1  1  E  / m  2  F  / m ) v  2

 n v  2
 b

 2 v  2
 n v  2

 b

 5
 (1  1  E  / m ) v  2

 n  1  v  2
 b

 v  2
 n v  2

 b

 1
 2
 F 1  1 – 1  2

 4(1  1  E  / m  2  F  / m ) v  2
 n v  2

 b

 [(1  1  E  / m ) v  2
 n  1  v  2

 b ] 2  G .  (64)

 Then by applying the Taylor expansion to the square root term ,  we can rewrite
 equation (64) as follows :

 1
 v  2

 2

 5 S 1  1  E  / m
 v  2

 b
 1

 1
 v  2

 n
 D F 1  2

 1
 4

 4(1  1  E  / m  2  F  / m ) v  2
 n v  2

 b

 [(1  1  E  / m ) v  2
 n  1  v  2

 b ] 2

 2
 1

 16
 H 4(1  1  E  / m  2  F  / m ) v  2

 n v  2
 b

 [(1  1  E  / m ) v  2
 n  1  v  2

 b ] 2  J 2

 1  .  .  .  G .  (65)

 If  k  is very large ,  we can simplify equation (65) into the following form :

 1
 v  2

 2

 <
 1  1  E  / m

 v  2
 b

 1
 1

 v  2
 n

 5
 1

 v 9 2
 b

 1
 1

 v  2
 n

 ,  (66)

 where  v 9 b  5  4 k  / ( m  1  E ) is the natural vibration frequency of the wall of the tank
 containing non-sloshing liquid .  For the rotation case ,  we use  v 9 b  5  4 kL 2 / ( I  1  E ) in
 the above derivation .

 Second ,  we discuss  v 1  .  By applying the Taylor expansion here also ,  we can rewrite
 v  2

 1   in equation (36) as follows :

 v  2
 1  5

 (1  1  E  / m ) v  2
 n  1  v  2

 b

 1  1  E  / m  2  F  / m
 1
 2
 F 1  1 – 1  2

 4(1  1  E  / m  2  F  / m ) v  2
 n v  2

 b

 [(1  1  E  / m ) v  2
 n  1  v  2

 b ] 2  G
 5

 (1  1  E  / m ) v  2
 n  1  v  2

 b

 1  1  E  / m  2  F  / m
 F 1  2

 1
 4

 4(1  1  E  / m  2  F  / m ) v  2
 n v  2

 b

 [(1  1  E  / m ) v  2
 n  1  v  2

 b ] 2

 2
 1

 16
 H 4(1  1  E  / m  2  F  / m ) v  2

 n v  2
 b

 [(1  1  E  / m ) v  2
 n  1  v  2

 b ] 2  J 2

 1  .  .  .  G
 <  v  2

 n  1
 v  2

 b

 1  1  E  / m
 5  v  2

 n  1  v 9 2
 b  .  (67)
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 Figure 6 .  The types of wall motion .  Spring-mass model .

 Equations (66) and (67) can be elucidated by means of a spring-mass model .  First ,
 we represent sloshing in a rigid tank and wall vibration without sloshing by S-M n   and
 S-M b 9 ,  respectively ,  in Figure 6 .  The natural frequencies of S-M n   and S-M b 9  are related
 to the mass and spring stif fness as follows :

 v  2
 n  5

 k 1

 m
 and  v 9 2

 b  5
 k 2

 m
 .  (68)

 Then equation (66) for  v 2  can be represented by the S-S-M model in Figure 6 ,  since
 the following relation holds :

 v  2
 SSM  5

 k 1 k 2

 m ( k 1  1  k 2 )
 5

 1
 1

 v  2
 n

 1
 1

 v 9 2
 b

 5  v  2
 2  .  (69)

 In the same manner ,  equation (67) for  v 1  can be represented by the S-M-S model ,
 since

 v  2
 SMS  5

 k 1  1  k 2

 m
 5  v  2

 n  1  v 9 2
 b  5  v  2

 1 .  (70)

 Although the present system is illustrated by a spring-mass model ,  the manner of
 connection in the present model is dif ferent from those seen in the conventional modal
 analysis because the springs are connected in series in the S-S-M model ,  while a single
 mass is connected to the walls by two springs in the S-M-S model .

 3 .  VALIDATION OF THEORETICAL METHOD

 A numerical method was also developed to analyse the fluid-wall interaction (Lu  et al .
 1995a) .  This numerical method was established on the basis of the PCBFC (Physical
 Component Boundary Fitted Coordinate) method (Takizawa  et al .  1992 ;  Takizawa &
 Kondo 1993) .  The PCBFC method has good numerical accuracy and stability because
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 Figure 7 .  Resonant sloshing induced by wall oscillation (rotation case) :  (a) flow pattern at  t  5  8  s ;  (b) time

 history of water level .

 it is a kind of BFC method using the physical components (PC) as variables and a
 physical curvilinear space as the analytical space .  In the present section we shall discuss
 the agreement between the analytical results and the numerical ones .

 3 . 1 .  S LOSHING  E XCITED BY A  M OVABLE  W ALL

 Corresponding to Section 2 . 1 . 3 ,  Lu  et al .  (1995a) numerically generated the resonant
 sloshing with a first-mode wave in a 1m  3  1m water tank [illustrated in Figure 7(a)] by
 rotating the right wall with the following function :

 θ ~  ( t )  5  D  cos  v  1 t  5  0 ? 005  3  5 ? 54  cos  5 ? 54 t .  (71)

 As shown in Figure 7(b) ,  the water level at the right end reaches a peak at the time of
 about 7 ? 3  s .  Therefore the growth rate of sloshing was estimated to be

 GR  5
 1 ? 045  2  1 ? 0000

 7 ? 3
 5  0 ? 00616  m / s .  (72)

 Substituting equation (23) into equation (29) ,  the analytical growth rate of sloshing
 was estimated to be

 GR  5
 D v  2

 1

 2 g

 1
 π  2  3  2  2

 4
 π  1  e π

 sinh  π
 2

 e π / 2

 2  sinh
 π
 2

 2
 1
 2 2 4  5  0 ? 00622  m / s .  (73)
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 Figure 8 .  Fluid-wall interaction in a tank having spring-supported wall :  (a) flow pattern at  t  5  4  s ;  (b) time
 history of right-wall angle .

 Thus ,  the growth rate obtained numerically is well predicted by the present analytical
 model .

 3 . 2 .  B EAT  P HENOMENON

 Corresponding to Section 2 . 2 . 3 ,  Lu  et al .  (1995a) chose the following geometry and
 parameters for the numerical analysis ,  the same as Eguchi  et al .  (1990) ;

 l  5  2 ? 5  m ,  h  5  0 ? 8  m ,  L  5  1 ? 0  m ,  I  5  1  3  10 3  kg  m 2 ,  and  k  5  4  3  10 4  N / m .

 The sloshing is initiated by putting the rotatable right wall out of the equilibrium
 position and then releasing it .  As shown in Figure 8(a) ,  the sloshing is in the third
 mode .  So we can estimate  E ,  F  and  v  3  as follows :

 E  5  0 ? 1625  3  10 3 ,  F  5  0 ? 0065  3  10 3  and  v  3  5  6 ? 064  Hz .

 Then ,  using equation (49) we can estimate the theoretical period of beats as follows ;

 T  5
 2 π

 4 38 ? 57  2  4 33 ? 01
 5  13 ? 5  s .  (74)

 As shown in Figure 8(b) ,  a beat phenomenon is observed in the wall vibration .  The
 numerically computed period of the beats is measured to be

 T  5  23 ? 0  2  9 ? 7  5  13 ? 3  s ,  (75)

 which is in good agreement with the analytical prediction .
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 3 . 3 .  F LUID - WALL  I NTERACTION  E XCITED BY THE  S ECOND  W ALL

 Corresponding to Section 2 . 3 ,  we first confirm that there are two natural frequencies in
 the fluid – wall coupled system .  We chose a 2-D tank with a spring-supported rotatable
 right wall ,  as illustrated in Figure 5(b) ,  with the following geometry :

 l  5  1 ? 0  m ,  h  5  1 ? 0  m ,  L  5  1 ? 0  m ,

 and the following parameters :

 k  5  10  000 ? 0  N / m  and  I  5  300  kg  m 2 .

 The geometry was chosen for simplicity and the parameters make the natural
 frequency of the rotatable wall comparable to the natural frequency of sloshing .  Using
 the formulae obtained in Section 2 ,  we estimate  E ,  F ,  G ,  v n  ,  v b  ,  v 1  and  v 2  as follows :

 E  5  88 ? 85 ,  F  5  32 ? 22 ,  G  5  60 ? 24 ,

 v  1  5  5 ? 538  Hz ,  v b  5  5 ? 774  Hz ,  v 1  5  6 ? 321  Hz ,  v 2  5  4 ? 639  Hz .

 Then we oscillate the left wall with angular velocities  θ ~  1
 L   and  θ ~  2

 L ,  respectively :

 θ ~  Ú

 L ( t )  5  0 ? 1  cos  v  Ú t .  (76)

 The numerical results are shown in Figure 9 .  Both the frequencies of the sloshing and
 the wall vibration are equal to  v 1  in Figure 9(a) ,  and equal to  v 2  in Figure 9(b) .  The
 vibration amplitudes of the wall and water level increase with time almost linearly in
 these two cases ,  indicating that both  v 1  and  v 2  are natural frequencies of the coupled
 system .

 Secondly ,  we also predicted the growth rate of the wall vibration .  Take the case
 having natural frequency  v 2  as an example .  The growth rate of the wall vibration
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 Figure 9 .  Time histories of sloshing and vibration of the walls in a two-movable-wall tank .
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 estimated from Figure 9(b) is 0 ? 008  rad / s .  The growth rate of wall vibration predicted
 by equation (62) is 0 ? 009  rad / s .  In the same way ,  we also found in the case having
 natural frequency  v 1  that the growth rates are accurately predicted by the present
 theory .

 4 .  ANALYSIS OF OVERFLOW-INDUCED VIBRATION OF THE WEIR

 4 . 1 .  T HEORETICAL  A NALYSIS

 4 . 1 . 1 .  Velocity potential related to the o y  erflow

 We have done the numerical investigation first .  It was found by numerical computation
 (Lu  et al .  1995b) that the oscillatory part of the overflow is the motive force for the
 growth of the weir vibration .  Then we carried out numerical computation by ignoring
 the constant part from the overflow as illustrated in Figure 10(a) .  In this case the
 vortex flow in the downstream tank never appears ,  as shown in Figure 10(b) ,  and hence
 in this case the flow in the downstream tank can be considered as a potential flow .
 Therefore we can derive the governing equation for this potential flow by modifying

0.20 m/s

(b)

(a)

l

Pressure condition

h

z

0

x

v = δq(t)/ε

ε

A1 A2

 Figure 10 .  Physical model of overflow :  (a) schematic for the analysis of the overflow ;  (b) computed flow
 pattern at  t  5  8  s .
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 the boundary condition at the weir and that at the free surface in equations (1) – (4) as
 follows :

 Û f

 Û x
 U

 x 5 l
 5  ( z  1  h ) θ ~  R ( t ) ,  (77)

 2 1
 g

 Û
 2 f

 Û t 2  U
 z 5 0

 ;  0  #  x  #  l  2  »
 Û f

 Û z
 U

 z 5 0
 5  (78)

 d q ( t  2  τ  )
 »

 ;  l  2  »  #  x  #  lE
 where  d q ( t  2  τ  ) and  »   are the oscillatory part of the overflow and the width of inlet ,
 respectively ,  and  τ   denotes the time delay experienced by the overflow from the time
 of leaving the top of the weir to arriving at the free surface of the downstream tank .

 Since it is dif ficult to solve the potential flow equation with the boundary conditions
 written above ,  we have modified these boundary conditions .  We separate the
 downstream tank into two regions :  A1 and A2 ,  as shown in Figure 10(a) .  A2 is a strip
 region just below the injection of overflow .  Since A2 is very narrow ,  we can neglect this
 region and take it as just giving the horizontal velocity distribution at the right side of
 A1 .  In order to obtain the velocity distribution we have performed a numerical
 computation of the flow in the downstream tank for a short time ,  such as 0 ? 2  s ,  shorter
 than the natural period of the weir vibration ,  as illustrated in Figure 11(a) ,  where the
 weir is fixed and the top boundary is also fixed ,  and both the inlet and outlet velocity
 are 0 ? 767  m / s .  Figure 11(b) illustrates the computed velocity distribution at 0 ? 2  s at the
 interface between A1 and A2 .  So we can model the velocity distribution in Figure
 11(b) as that of the rotation flow illustrated in Figure 11(c) .  Then ,  we can assume that
 the oscillatory part of the overflow in Figure 10(a) gives an oscillatory rotation velocity
 distribution near the weir .  Therefore the oscillatory part of the overflow looks like a

(b)

ε
(c)

ε

(a)

ε

0

z

h
v = θ(z + h)

.

Fixed

 Figure 11 .  Velocity distribution :  (a) the system for which the computation was conducted (with equal inlet
 and outlet velocities) ;  (b) the computed velocity distribution at 0 ? 2  s ;  (c) the flow distribution in the rotation

 flow case .
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 virtual oscillatory wall .  Using this assumption ,  the present system can be treated as a
 kind of fluid – wall coupled system having two movable walls as shown in Figure 5 ,  the
 only dif ference being that the two movable walls are situated at the same side of the
 tank .  The angular velocity of the horizontal flow relative to the weir (or the angular
 velocity of the virtual oscillatory wall) can be estimated by the flow-rate conservation
 of region A2 as

 θ ~  ( t )  5
 2 d q ( t  2  τ  )

 h 2  .  (79)

 Finally we can modify the boundary conditions in equations (77) and (78) as follows :
 Û f

 Û x
 U

 x 5 l
 5  ( z  1  h )[ θ ~  R ( t )  2  θ ~  ( t )] ,  (80)

 Û f

 Û z
 U

 z 5 0
 5  2

 1
 g

 Û
 2 f

 Û t 2  U
 z 5 0

 .  (81)

 Then by following the theoretical derivation of equation (52) in Section 2 . 3 ,  we can
 obtain the governing fluid-weir coupled equation as

 ( I  1  E ) θ ̈  R ( t )  1  k θ R ( t )  5  F E t

 0
 ( θ & R ( τ  )  2  θ &  ( τ  ))  cos  v n ( t  2  τ  )  d τ  1  E θ ̈  ( t ) ,  (82)

 where  θ R ( t ) is the angle of the weir ,  and the expressions of coef ficients  E  and  F  are the
 same as in equations (41) and (42) .

 4 . 1 . 2 .  O y  erflow rate in the upstream tank

 The overflow rate is estimated by the following empirical formula (Henderson 1966) :

 q ( t )  5  2 – 3 C d 4 2 g  h 3 / 2 ( t ) ,  (83)

 where  C d   and  h ( t ) denote an experimental coef ficient and the thickness of overflow at
 the top of the weir ,  respectively ,  and  C d  5  0 ? 611 is recommended .   h ( t ) in the above
 equation is solved by discretizing the following mass conservation equation in the
 upstream tank :

 Wh ~  ( t )  1  q ( t )  2  1 – 2 H 2 θ ~  ( t )  5  VW ,  (84)

 where  H ,  W  and  V  denote height ,  width of inlet and inlet velocity of the upstream
 tank ,  respectively .  We separate the overflow rate into two parts as follows :

 q ( t )  5  q 0  1  d q ( t ) ,  (85)

 where  q 0  is the inlet flow rate of the upstream tank .  We then linearize the empirical
 equation (83) ,

 q ( t )  5  C d 4 2 gh 0 h ( t )  5  c 0 h ( t ) ,  (86)

 where  h 0  is the overflow height in the case that the weir is fixed ,  and can be determined
 by

 q 0  5  C 0 h 0  .  (87)

 Hence ,   C 0  is given by

 C 0  5  C d 4 2 gh 0  5  (2 gC  2
 d q 0 )

 1 / 3 .  (88)

 By substituting equations (85) and (86) into (84) ,  we can obtain

 W
 C 0

 d ~  q ( t )  1  d q ( t )  5  1 – 2 H  2 θ ~  R ( t ) .  (89)

 Equations (79) ,  (82) and (89) form a homogeneous equation set .
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 4 . 1 . 3 .  Characteristics of the o y  erflow - induced  y  ibration

 We next solve the aforementioned equation set .  We can employ strict mathematics to
 show the exponential growth rate of the weir vibration .  We begin the derivation by
 assuming  θ R ( t ) to grow exponentially [for explanation ,  please refer to appendix III . A
 in Lu (1995)]

 θ R ( t )  5  B e a t  sin  v 2 t ,  (90)

 where  B  and  a  are unknown coef ficients .  Substituting equation (90) into equation (89) ,
 we obtain the overflow as follows :

 d q ( t )  5  R 0 B e at  sin  v 2 ( t  1  τ  9 ) ,  (91)
 where

 R 0  5  1 – 2 H 2 –  a  2  1  w  2
 2

 (1  1  Wa  / C 0 )
 2  1  ( W v 2 / C 0 )

 2  ,  (92)

 and

 τ  9  5
 1

 v 2

 arctan
 v 2 S 1  1

 Wa

 C 0
 D  2  a S W v 2

 C 0
 D

 a S 1  1
 Wa

 C 0
 D  1  v 2 S W v 2

 C 0
 D

 .  (93)

 Since  a  Ô  v 2 ,  we can rewrite  R 0  and  τ  9

 R 0  5
 1 – 2 H 2 v 2

 4 1  1  ( W v 2 / C 0 )
 2  ,  and  τ  9  5

 1
 v 2

 arctan
 C 0

 W v 2

 .  (94)

 Comparing equation (91) with equation (90) ,  we see that the overflow at the top of
 the weir is always ahead of the weir vibration by the time  τ  9 .  If the time delay  τ   is
 equal to  τ  9 ,  the overflow at the free surface of the downstream tank is written as

 d q ( t  2  τ  )  5  R 0 e
 2 a τ B e at  sin  v 2 t .  (95)

 By substituting equation (95) into (79) ,  we obtain the angular velocity of the virtual
 wall ,

 θ ~  ( t )  5  R e 2 a τ B e a t  sin  v 2 t ,  (96)

 where  R  5  2 R 0 / h 2 .  Then substituting equation (96) into (82) ,  we finally obtain  θ R ( t ) as
 follows [for detailed derivation ,  please refer to appendix III . B in Lu (1995)] :

 θ R ( t )  5  R e 2 a τ B
 X

 2 a
 e at  sin  v 2 t ,  (97)

 where  X  is given by

 X  5
 E ( v  2

 n  2  v  2
 2 )  1  F  ( a 2  1  v  2

 2 )
 ( I  1  E  2  F  )( v  2

 1  2  v  2
 2 )

 .  (98)

 Comparing equations (97) and (90) ,  we obtain the following equality :

 R e 2 a τ B
 X

 2 a
 5  B ,  (99)

 and therefore obtain the exponential growth rate as follows :

 a  5  1 – 2 R e 2 a τ X  5  1 – 2 R e 2 a τ  E ( v  2
 n  2  v  2

 2 )  1  F  ( a  2  1  v  2
 2 )

 ( I  1  E  2  F  )( v  2
 1  2  v  2

 2 )
 .  (100)
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 Since  a  Ô  v 2  and e 2 a τ  <  1 ,  equation (100) is simplified to

 a  5
 R

 2( I  1  E  2  F  )
 ?

 E ( v  2
 n  2  v  2

 2 )  1  F v  2
 2

 v  2
 1  2  v  2

 2

 ,  (101)

 where

 R  5  2
 R 0

 h 2  5
 H  2 v 2

 h 2 – 1  1 S W v 2

 C 0
 D 2

 5
 H  2 v 2

 h 2 – 1  1 S  W v 2

 (2 gC 2
 d q 0 )

 1 / 3 D 2
 .

 a  in equation (101) is always positive because  v n  .  v 2  and  v 1  .  v 2  [see equation
 (37)] .  Because  τ  5  τ  9  is assumed in deriving equation (101) and under this condition
 the overflow and the weir vibration are always in phase ,   a  in this case is the maximum
 growth rate .  If we do not assume  τ  5  τ  9 ,  the growth rate in equation (101) may be
 generalized as follows :

 a ( τ  )  5  a  cos  v 2 ( τ  2  τ  9 ) ,  (102)

 i . e .  as a sinusoidal function .
 Comparing equation (101) with (62) ,  it is clear that the theoretical results in this

 section are essentially the extensions of those in Section 2 :  the coef ficient  G  in equation
 (62) is replaced by the term  E  in equation (101) because the overflow is dropped in the
 same side of the spring-supported weir ;  the term  D  in equation (62) is replaced by the
 term  R  in equation (101) because the amplitude of the virtual wall is also determined
 by the flow in the upstream tank .

 In equation (101)  a  indicates the ef fect of elasticity of the weir on the growth rate .
 We can analyze  a  as follows .  By substituting equation (43) into  a ,  we obtain

 a  5  R
 [ E (1  1  E  / I  2  2 F  / I )  1  F  (1  1  E  / I )] v  2

 n  2  ( E  2  F  ) v  2
 b

 4( I  1  E  2  F  ) 4 [(1  1  E  / I ) v  2
 n  2  v  2

 b ] 2  1  4 F  / I v  2
 n v  2

 b
 1  R

 E  2  F
 4( I  1  E  2  F  )

 .  (103)

 Then ,  by solving the dif ferential equation

 da
 d v b

 5
 d

 d v b
 F  2 R ( E  2  F  )

 4( I  1  E  2  F  )
 ?

 v  2
 b

 4 [(1  1  E  / I ) v  2
 n  2  v  2

 b ] 2  1  4 F  / I v  2
 n v  2

 b
 G  5  0 ,  (104)

 we can obtain the following condition :

 (1  1  E  / I  2  2 F  / I ) v  2
 b  5  (1  1  E  / I ) 2 v  2

 n .  (105)

 By substituting equation (105) into equation (103) ,  we can obtain the following
 expression for  a ;

 a  5
 R
 4
 S I  2  E

 I  1  E  –  F
 I  1  E  2  F

 1
 E  2  F

 I  1  E  2  F
 D .  (106)

 When  I    E  and  I    F  ,  equations (105) and (106) reduce to

 v  2
 b  5  v  2

 n ,  and  a m a x  5
 R

 4
 S E

 I
 1 – F

 I
 D .  (107 , 108)
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 Equations (107) and (108) indicate that  a  has a peak when  v  2
 b  5  v  2

 n .  We can see from
 (108) that the peak height decreases with an increase of  I .  Therefore ,  the exponential
 growth rate of the weir has a peak value related to the elasticity of the weir .  It is
 concluded that under the condition  v  2

 b  5  v  2
 n ,  the coupled system is synchronized such

 that it can absorb the most energy .

 4 . 2 .  V ALIDATION OF THE  T HEORETICAL  R ESULTS

 The PCBFC method was further developed by Lu  et al .  (1995b) to simulate the
 overflow-induced vibration experiment performed by Fukuie & Hara (1989) .  In that
 simulation ,  the downstream tank is taken as the computational domain ,  and the
 upstream tank is taken into consideration by solving the flow rate balance equation in
 the upstream tank .

 By taking advantage of the numerical method ,  we analysed the ef fect of time delay .
 The time delay as well as the injection velocity of the overflow at the inlet of the
 downstream tank are determined by the fall height  D H  (see Figure 2) .  However ,  we
 change the delay time  τ   artificially to single out its ef fect on the weir vibration ,  while
 the injection velocity of the overflow is fixed .  The computed growth rate of the weir
 vibration in terms of the time delay  τ   (expressed in terms of the period  T  ) is shown in
 Figure 12 .  From this figure we see that the overflow may either make the weir
 vibration amplitude grow or decay depending on the delay time .  Two points are
 outstanding in this figure .  First ,  the growth rate dependency is similar in shape to a
 sinusoidal function ,  although the peak is sharper and the trough is wider .  Secondly ,  the
 peak has a delay time of approximately  T  / 10 .

 Substituting equation (88) into equation (94) ,  we estimate  τ  9  as follows :

 τ  9  5
 1

 v 2

 arctan
 (2 gC 2

 d q 0 )
 1 / 3

 W v 2

 5
 T
 2 π

 arctan
 (2  3  9 ? 8  3  0 ? 611 2  3  0 ? 011) 1 / 3

 0 ? 1  3  (0 ? 82 / 2 π  )
 <  0 ? 1 T .  (109)
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 Therefore ,  we can see that equation (102) predicts satisfactorily the positive peaks at
 τ  <  0 ? 1 T  and 1 ? 1 T  and the negative valley near  τ  <  0 ? 6 T  in Figure 12 .

 Then we studied the dependence of the growth rate on the stif fness of the spring ( k )
 and the inertia of the weir ( I ) .  In this case ,  we chose the inlet flow rate and fall height
 as follows :

 q 0  5  0 ? 05  m / s  3  0 ? 1  m ,  and  D H  5  0 ? 01  m .

 We chose small  q 0  and  D H  this time ,  to avoid the nonlinear ef fect which may invalidate
 the comparison between the numerical results and the analytical prediction .  Theoreti-
 cal and numerical exponential growth rates of the weir vibration are compared in
 Figure 13 .  As indicated in this figure ,  there is a peak in the growth rate for each weir
 inertia  I ,  and the height of peak decreases with increasing stif fness  k .  The agreement
 is very good ;  especially the location of the peak is well predicted .

 We also estimated the natural frequency of the weir  v b   corresponding to the peak in
 this figure ,  and find that it is very close to the natural frequency of pure sloshing  v n .
 By comparison ,  we can see that the analytical derivation in the previous subsection is in
 good agreement with the present numerical analysis .

 4 . 3 .  L IMITS OF THE  A NALYTICAL  M ETHOD

 Using the numerical method ,  we also investigated the ef fect of the constant part of the
 overflow rate  q 0  on the weir vibration .  Since the constant part of the overflow is equal
 to the circulation flow rate of the loop ,  we performed computations by fixing the fall
 height at  D H  5  3  cm ,  and changing the inlet flow rate from 3 to 23  cm / s .  The
 numerical results are shown in Figure 14 .  The average velocity of the free surface flow
 in the downstream tank  U  increases with increasing circulation flow rate .  With an
 increase of  U ,  the growth rate of the weir vibration decreases and becomes negative
 after a peak .  The growth rate in Figure 14 is predicted to be proportional to the

 Stiffness of spring, k  (N/m)
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 Figure 14 .  Ef fect of inlet flow rate  q 0  on overflow-induced vibration for a fall height of 3  cm ;  the lines are
 lines of best fit through the computed points .

 circulation flow rate if only the linear ef fects are considered .  However ,  it has been
 shown by Takizawa & Kondo (1993) that  U  is proportional to the ‘‘sloshing Froude
 number ( Frs ) . ’’ When  Frs  exceeds a threshold value ( Frs c  5  0 ? 30  ,  0 ? 35) ,  an ef fect
 called ‘‘flow-caused damping’’ is produced .  In Figure 14 ,   Frs  exceeds this critical value
 when the inlet flow velocity of the upstream tank is larger than 15  cm / s .  Therefore we
 can conclude that the ‘‘flow-caused damping’’ ef fect suppresses the sloshing ,  and
 subsequently suppresses the weir vibration when the inlet flow velocity of the
 upstream tank is larger than 15  cm / s .  This is a nonlinear ef fect ,  which can only be
 found when we consider the ef fect of the constant part of overflow and is outside the
 capability of the present analytical approach .

 5 .  CONCLUSIONS

 A method dif ferent from a conventional modal analysis was developed for the analysis
 of the vibration of a wall coupled with the sloshing of fluid in a vessel .  Since the
 governing equation of flow in the present case has nonhomogeneous Neumann
 boundary conditions ,  and the motion equation of the wall coupled with the sloshing has
 a convolution integral and high-order derivatives ,  the present formulation is beyond
 the scope of conventional modal analysis .  Therefore ,  it was solved by the potential
 separation technique and the use of Laplace transforms .  It is new in the sense that it is
 an extension of the method proposed by Aslam  et al .  (1979) and Fujita  et al .  (1985) and
 is applied to the coupled weir-sloshing problem .

 By the present method ,  we succeeded in obtaining the explicit physical characteris-
 tics of fluid-wall interaction such as frequency ,  beat period ,  phase and growth rate ,  and
 also in giving a physical meaning to the present analytical results by means of a
 simplified spring-mass model .  All these results help us to understand the detailed
 physical behavior of the fluid-wall interaction ,  and also supply benchmark results for
 numerical analysis in this field .

 The analytical results obtained by the present method were shown to be in good
 agreement with those obtained by numerical analysis .  Validation of the present method
 was confirmed .

 An overflow model was proposed ,  in which the overflow acts as an oscillatory virtual
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 wall to give an oscillatory and rotatable velocity distribution in the downstream tank .
 Because it is established on the basis of a numerical analysis ,  it is more realistic than
 the pressure boundary assumption used previously .  In addition ,  this model permits
 simplification of the mathematics required for analysis .

 By comparing the resonant vibration in the two-movable-wall tank with the
 overflow-induced vibration ,  we can understand that the virtual oscillatory wall works as
 a vibration source and contributes to the growth of the overflow-induced vibration ,  just
 like the left wall in the two-movable-wall tank .  This is one part of the mechanism of the
 vibration of the weir .

 It was found that the weir vibration can be suppressed by selecting a moderate
 overflow height ,  since the overflow height determines the time required for the flow
 leaving the weir to reach the tank .  It was also shown that the weir vibration can be
 alleviated by selecting a moderate stif fness and moment of inertia of the weir ,  so that
 the natural frequency of the weir mismatches the natural frequency of sloshing .

 Validation of the present analytical model of the overflow-induced vibration of the
 weir was also demonstrated by comparison with numerical analysis .  In addition ,  the
 nonlinear ef fect of the flow was discovered by the numerical analysis .  For the first time ,
 it was found that a so-called ‘‘flow-caused damping’’ ef fect may suppress the
 overflow-induced vibration .  This is another mechanism of the vibration .
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 APPENDIX :  NOMENCLATURE

 a  or  a ( τ  )  exponential growth rate of the weir vibration
 C d  empirical coef ficient for estimation of overflow rate
 D  amplitude of forced vibration of the left wall
 E  coef ficient determined by the size of tank
 F  coef ficient determined by the size of tank
 G  coef ficient determined by the size of tank
 GR  growth rate of sloshing
 g  gravity constant
 H  height of the weir
 h  depth of the downstream tank
 h ( t )  thickness of overflow at top of the weir
 I  moment of inertia of the wall (or weir)
 k  spring constant
 L  distance from the hinge to the spring
 l  width of the tank
 m  mass of the movable wall
 p  pressure in the fluid
 q ( t )  overflow rate
 q 0  constant part of overflow (inlet flow rate of the upstream tank)
 T  period of sloshing
 t  time
 x  coordinate axis in physical space
 z  coordinate axis in physical space
 V  inlet velocity of the upstream tank
 W  inlet width of the upstream tank
 h  ( t )  water level of the free surface
 θ  ( t )  angle of the movable wall (or weir)
 j  ( t )  displacement of the movable wall
 τ  time delay
 τ  9  time by which the overflow is ahead of the weir vibration
 f  flow velocity potential
 v b  natural frequency of the wall (or weir)
 v n  natural frequency of sloshing in  n th mode
 v  Ú  two natural frequencies of the fluid-wall coupled system


